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Abstract-Following a suggestion due to Morse and Feshbach, adjoint variational principles are 
constructed for unsteady convective diffusion of a passive scalar, such as heat or mass, in an incom- 
pressible fluid under conditions of considerable generality. By recourse to the classical theory of fields, 
sufficiency conditions are established for an extremal principle. A simple illustrative example is 

adduced. 

I. INTRODUCTION original and adjoint variables, respectively. Its 
SINCE Onsager’s [lo] introduction of a dissipa- first variation, assuming the surface to be fixed, 
tion function, taken to be one-half the rate of is given by 
irreversible production of entropy, as an in- 
variant in dissipative processes, the problem of a SJ1 = j j [&p*Lp, + cp*LSp] do dr (2) 
variational principle for the heat equation, in its OV 

various forms, has occupied the attention of a assuming the commutativity of L and the varia- 
number of investigators. Rosen [l 11 and Cham- tion operator. Now, by integrating by parts and 
bers [3] were able to derive suitable Lagrange by use of Green’s theorem, the second term can 
densities, valid, however, under highly restrictive be written 
conditions. It remained for Biot [l] to present a t 
formalism exactly analogous to that of mechani- 
cal dissipative systems, so that quite general 

iL@L+dvdr= ++ipl*dvdr+ 

problems in the conduction of heat in aniso- jJ’$sdT+ SPzl:z;du (3) 
tropic solids could be solved. Biot and Daugha- 0 V 

day [2] later extended the application of the 
formalism to the ablation of slabs and Nigam 

where L is the adjoint operator, and PI and PZ 

and Agrawal [9] and Gupta [6] to convective 
are functions of q*, +, and their derivatives 

heat transfer in an incompressible fluid. 
with respect to space and time. Then the vanish- 

In this note we elaborate upon a suggestion by 
ing of the first variation requires that 

Morse and Feshbach [8] for the construction of 
Lp = 0 (4) 

an adjoint variational principle, which does not Ly* = 0 (5) 
seem to have been pursued in the engineering 
literature. The basic idea is the following: con- 

in the domain V for t 2 0. In addition, if the 

sider a second-order dissipative operator, L, 
boundary conditions for 9, are prescribed at 

defined on some space-domain, V for time 
S and at t = 0, appropriate boundary and 

t 3 0, subject to certain bomlary mditions 
“initial” conditions on p* are those which make 

on the surface, S, of V, and initial conditions at 
the last two integrals in equation (3) vanish_ 

t = 0, Then, form the functional 
Equations (4) and (5) are the Euler-Lagrange 
equations for the variational principle SJ = 0. 

J = j S y*Lp dv dr (1) 
If the kernel of equation (1) is designated by 

OV Kl = cp*Lcp, it is evident that KZ = &qP, or any 
where v and p* will henceforth be termed the linear combination of Kl and Ks, leads to the 
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same Euler-Lagrange equations. t Further, one 
can form K (pl*, y), a homogeneous quadratic 
function of v, ~1*, and their first derivatives in 
space and time (called the Lagrange density), by 
application of Green’s theorem and integration 
by parts. It can be seen that the Lagrange 
density, and hence the variational principle, is 
not unique, although all principles having the 
same Euler-Lagrange equations can be trans- 
formed into one another by addition of suitable 
surface integrals. 

The subject has now been brought into the 
framework of the classical theory of fields, from 
which many of the results can be directly applied. 
In particular, a Hamiltonian density, which has 
the dimensiol~s of an energy density, can be 
identified, whose integral over the volume V, 
under suitable restrictions, remains constant 
with time. In this event, the adjoint system 
represents a “mirror-image” system into which 
the energy dissipated in the physical system 
drains. The equations of motion can be written 
in Hamilton’s canonical form, although, as a 
consequence of the fact that the Lagrange den- 
sity is linear and not quadratic, this does not 
result in a transformation to a new set of state 
variables, As a consequence, Hamilton’s equa- 
tions lead right back to the original equations of 
motion. Energy flux density vectors for the 
extended system can also be identified. An 
interesting subject for future investigation, which 
is not further considered here, is the possible 
application of the Hamilton-Jacobi theory, with 
its well-known connection to the theory of 
geometric optics, to the extended system. 

Il. STATEMENT OF THE PROBLEM 

To make matters more concrete, consider the 
general problem of unsteady convective diffusion 
of heat in an incompressible fluid of specified 
velocity. For the present, the fluid properties are 
assumed to be temperature-independent, al- 
though they may be specified functions of 
position. The removal of this restriction will be 

t In particular, the adjoint operator is usually defined 
by the equivalence of the volume integral of the kernel 
(KI - K2) to a surface integral. This is the basis of the 
approach employed by Goodman 1121 in solving for an 
unknown surface temperature or heat flux in heat con- 
duction problems by a non-variational technique. 

discussed later. The volume occupied by the 
Auid may be finite or infinite in extent, simply or 
multiply connected, open or closed. The last 
distinction determines whether fluid enters the 
volume frotn outside points. 

The governing differential equation is then 

T,:l + UjT,j - (aT,i),j Q L.Z 0 (6) 

where the Cartesian space-time variables: are 
given by trn = s, y, z, t; m = 1, 2, 3,4. Commas 
denote partial differentiations, and the Einstein 
summation convention is used throughout, the 
subscripts m and n to be summed over 1,2, 3,4, 
and j over 1, 2, 3. T,a and .!I$ represent the 
temperature, thermal diffusivity, and velocity 
components of the fluid at any point. Q, the 
instantaneous strength of the distributed heat 
source, which includes the viscous dissipation 
term, is at present assumed to be of the form 
P == .fi (&)T i-$&XI, where .ti and ,fi are 
specified functions of position and time. 

The initial condition is 

T = TO at t-r =-= 0 (7) 

On the surface S a very general boundary 
condition is imposed : 

T,fri + pi7 = g 011 S1 for 0 < f4 :$ t (8) 

where yj are the direction cosines of the outward 
normal to the surface, and /3 and g are prescribed 
(not necessarily continuous) functions of the 
surface co-ordinates and time. This non-homo- 
geneous boundary condition of the third kind is 
the most general linear boundary condition 
involving only the temperature and its normal 
gradient. Homogeneous boundary conditions, 
and boundary conditions of the first and second 
kind (specified surface temperature and heat 
flux) can be obtained as special cases by a 

$ Cartesian tensors are used to avoid obscuring the 
essential details. No difficulty is experienced in transform- 
ing to more general metrics, Also, the notation treats 
space and time variables on an equal footing. This has 
some advantages later in treating the stress-energy 
tensor. In this four-dimensional space the appIicati~~n of 
Green’s theorem over a domain Iz, where the point 
P(<,) ER, is equivalent to the use of Green’stheorem over 
the three-volume, V, together with integration by parts 
with respect to time. 
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limiting process involving /I and g over portions 
of the surface. 

The adjoint system for the space-time domain 
satisfies the time-reversed equation 

T,; + UjT,; + (cJ,j),i +.fiT* +.fi = 0 (9) 

The adjoint “initial” condition is time-reversed : 

T* = TO(&) at [4 = t (10) 

while the adjoint boundary condition is taken to 
be 

on S 

T,;y,+(P+&+*=n (11) 

0<54<f 

The reason for this choice will shortly become 
clear. Note that the original and adjoint bound- 
ary conditions are identical only if no fluid 
passes through S. Finally, the incompressibility 
stipulation requires that 

lJi,j = 0 (12) 

Other restrictions, in the form of admissibility 
conditions, will appear in the discussion. 

III. CONSTRUCTION OF A VARIATIONAL 
PRINCIPLE 

We begin by seeking a Lagrange density whose 
Euler-Lagrange equations are the governing 
differential equations (6) and (9). Such a density 
is 

L = aT,jT,; -t 4 (T”T,4 - TT,;) + 4 U,,(T,iT” - 

T,;T) - TflT* -jXT+ T*) (13) 

satisfying the Euler-Lagrange equations 

(14) 

By substitution of equation (13) into equation 
(14), it is readily verified that these are equivalent 
to equation (6) and equation (9). Equation (14) 
arises from the variational principle 6J = 0, 
where 

J= jJLdvd& 
ov 

05) 

and dv = d& d& d&. This may be written more 
compactly 

J = JR L d&z (16) 

where dtm = dti d[a d& dt4 and R: &E V, 
0 < ‘54 < 1. 

We turn now to the problem of satisfying the 
initial and boundary conditions. One obvious 
approach is to limit trial functions to those 
which satisfy these conditions. For simple cases 
this will be a preferred procedure, but for more 
complicated problems it is difficult to construct 
admissible trial functions. It is then preferable 
to make these conditions appear as Euler- 
Lagrange equations by suitable modification of 
the principle. Thus, by adding surface integrals 
to J, one obtains 

t 
J’=J+ Sjc@lTT*-(T+ 

-l 

T*)g;d: d5‘4 + J $ To(T* - 
i 

(17) 
V 

T)@a;dtl J 

where /31 is a function of space and time to be 
determined. On setting 6J’ = 0, one obtains on 
the four-surface, making use of equation (12): 

[ d [(aT,i - 4 UjT) aT* + (aT,T + ’ 

+ UiT*)GT]yj ds dt4 + J 4 (T*6T - 
V 

T6T*) li:z: du + a % s, [(BIT - 
i 

(18) 

g)6T* + (PIT* - g)Wl ds d&i + 1 

J 1 To(i?T* - ST) I$::; dv I 
v J 

where the first two integrals arise from the 
application of the four-space divergence theorem 
to the four-volume integral in equation (15). 
Upon collecting terms, the natural boundary 
conditions are seen to be 

0<54<t 

0 <. t4 < t 
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with the choice IV. CLASSICAL THEORY OF FIELDS 

these equations reduce to the desired boundary 
conditions (8) and (11). However, in order to 
make the time-integrated terms in equation (18) 
vanish, it is necessary to restrict admissible trial 
functions to those which satisfy equations (7) 
and (10). 

An alternative formulation of the variational 
principle is obtained with the aid of the four- 
space divergence theorem. The last term in 
equation (17) can be replaced by a volume 
integral ] 4 To(T* - T),s dtm. However, the 

integral oter S in equation (17) presents difficul- 
ties, since it is not in suitable form for applica- 
tion of the divergence theorem. Re-writing it as 

The variational principle can be brought into a 
broader framework by relating it to the classical 
theory of fields [5], formulated by Hamilton, 
Jacobi, and others. The equivalence of a 
stationary property of the functional [equation 
(16)] with respect to arbitrary weak variations 
of the generalized co-ordinates, T and TX, to the 
Lagrangian equations [equation (14)], is known 
as Hamilton’s Principle, first formulated for 
dynamical systems. From the Lagrange density, 
L, one can construct the components of the 
“stress-energy” tensor, given by 

m,n 1 1, 2, 3, 4 (22) 

I - j ] Fgq ds d[4, where Fi = ay#lTT* - If, in addition to the previous restriction of the 
physical properties being dependent only upon 
position, the flow is now taken to be steady, 
although not necessarily uniform, one can 
readily show that 

II s 

U + T*kl 

it can now be transformed into j Fi,j dfrn, so 
that n 

J’ = j [L $- FM + 4 To(T* - T),41 dtm (20) 
H 

The two formulations are strictly equivalent, and 
since there may be difficulty in formulating a 
suitable vector function Fj which assumes the 
required values on S and whose divergence 
exists throughout V, there seems to be no 
particular advantage of equation (20). However, 
the method makes clear the construction of 
alternative variational principles. Thus, adding 
the four-divergence of the four-vector (0, 0, 0, 

$ TT*) to L, one obtains in place of equation 
(17). 

Ji = ] [L - &(TT* + (T - T*)To),d dtm + 1 
R 

(21) 

On taking the variation, the time-integrated 
terms in equation (18) are now replaced by 
- j (T - To)ST* I$:=: du, which vanishes if 

tria[ functions for T* only are restricted by 
admissibility initial conditions. The initial con- 
dition, equation (7), now appears as an Euler- 
Lagrange equation, so that the class of ad- 
missible functions has been enlarged. 

w45,j t w44,4 = 0 (23) 

where W43 are the components of the “energy- 
flow” vector, and W44 = H is known as the 
Hamiltonian density. The proof is straight- 
forward, since from equation (22) 

plus corresponding terms in T*, since L is not 
an explicit function of time. Upon making use of 
equation (14), this reduces to 

W mn,n = - L,Anj (25) 

which vanishes for m = 4, proving equation 
(23). For m = 1, 2, 3, L,j vanishes if the physical 
properties are constant, in view of equation (12). 

The practical significance of all this lies in the 
fact that from equation (23) 
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J J a 
W4jJ dv = - w44,4 dv = - at J w44 C-Iv 

V V V 

(26) 

upon applying Green’s theorem. Now if the 
Hamiltonian energy density over the volume V 
is to remain constant with time, the surface 
integral on the right of equation (26) must 
vanish. This implies that the energy dissipated 
from the real system is drained into the adjoint 
system, so that the principle is a conservative one. 
This has computational advantages in that the 
stationary property for a conservative system 
corresponds to an extremal principle,? which 
assures convergence (although not necessarily to 
the correct answer). The convergence of the 
minimal sequence to the exact solution can be 
rigorously demonstrated for specialized con- 
ditions, such as the general linear elliptic partial 
differential equation with linear boundary con- 
ditions (7). In particular, the principle is a 
conservative one if the volume, V, extends over 
all space, and if the disturbance represented by 
the initial conditions vanishes at infinity. For a 
finite volume one can construct restricted con- 
servative variational principles. Thus, employing 
the basic variational principle, equation (15), 

W4pj = T,4ydaT,T + t ujT*> + T&daT,j - 

- 4 UjT) (27) 

This vanishes everywhere on the surface S, if (1) 
the temperature and its adjoint are time-inde- 
pendent over the surface S, or (2) over positions 
of the surface where the real and adjoint 
temperatures are allowed to vary with time, the 
normal velocity and heat flux are both zero 
(corresponding to an adiabatic streamline or 
solid surface). In this event the integral of the 
Hamiltonian energy density over the volume V 
is independent of time. If a suitable vector 
function Fj can be found, a variational principle 
corresponding to equation (20) is applicable. 

t In order to determine whether the extremal principle 
is minimal, cf. [4] for a brief exposition of Jacobi’s theory 
of conjugate points. 

W4~yj then vanishes upon application of 
equations (8) and (11). 

Finally, one can derive “canonical momentum 
densities” from equation (13) : 

The adjoint temperature is thus proportional to 
the “momentum density”, which bears little 
relationship to the momentum density of simple 
dynamical systems. As noted previously, the 
Lagrange density is linear, rather than quadratic, 
in the time derivatives. Hence, the momentum 
densities are not independent of the generalized 
co-ordinates, T and T*. It can also be shown, from 
the variational principle in terms of the Hamil- 
tonian density, H, after use of the four-space 
Green’s theorem, that Hamilton’s canonical 
equations are 

T>4(,“,4 - $3 = g - ($t),* (29a) 

T,;(g --$%) =$ (E),j (2gb) 

These give no new information, however, 
since use of equation (22) and equation (28) in 
equation (29) leads back to the heat convection 
equation and its adjoint. This is to be expected 
from the discussion accompanying equation 
(28). Nevertheless, the fact that the adjoint 
momentum density is a function only of the 
physical temperature (and vice versa) presents 
some significant numerical savings, since the 
coefficients of a physical trial function in which 
they appear linearly can be solved for inde- 
pendently of those of the adjoint trial function. 

V. REMARKS 

It is seen that the restrictions in order to 
obtain a conservative principle, unless equation 
(20) can be employed, are so severe as to be 
infrequently met with in practice. This need not, 
however, be a barrier to the use of the principle, 
since the approximation procedure (either Ritz or 
Galerkin) will nevertheless normally converge 
satisfactorily. Barring some pathological be- 
havior of the sought function, it is usually found 
that a limit appears to be approached as the 
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number of trial functions is increased, even if L 
is not definite in sign (corresponding to a 
saddlepoint as the stationary point). This allows 
an enormous increase in versatility of the 
principle, since /J and g, as well as the fluid 
velocity and thermal properties (the last re- 
quiring an obvious slight modification of the 
variational principle), may now be specified 
functions of both position and time. The non- 
linear problem where the physical properties are 
temperature-dependent, can also be handled by 
an iterative method, starting with any assumed 
temperature distribution. 

Either the Ritz or Galerkin methods [7] can 
be used in implementing the solution. The 
choice of trial functions will in some cases be 
improved by a foreknowledge of the form of the 
solution, as shown below; but in any case the 
use of functions belonging to an appropriate 
complete orthogonal set will usually have 
computational advantages. 

Finally, some preliminary comparison between 
the adjoint convective variational principle with 
the extension of the Biot dynamical variational 
method developed by Nigam and Agrawal may 
be appropriate. One notes that the Nigam- 
Agrawal principle is expressed only as a varia- 
tional equation, since the functional which is 
subject to variation is not known. The Ritz 
method is therefore not applicable (although the 
Galerkin technique can still be used). Also, 
solution by the dynamical principle has been 
demonstrated only for the case when the con- 
vective heat-transfer equation can be transformed 
into the heat conduction equation in a stationary 
medium by substitution of a new time-like 
variable. 

VI. EXAMPLE 

A simple illustrative example is now given. 
Consider the case where a moving slab (or fluid) 
passes steadily from a reservoir maintained at 
one temperature to another reservoir maintained 
at a higher temperature. Upon choosing suitable 
temperature and length scales, the problem can 
be written in dimensionless terms: 

T = T(X) (30) 

where P is the Peclet number, and 

T(0) z 0; T(1) = 1 

The adjoint system is then 

(31) 

(32) 

subject to the boundary conditions 

T*(O) = 0; T*(l) = 1 

The exact solutions are 

(33) 

epx- 1 e-PX- 1 
T zzz 

ep - 1 
; T” zz ,Ip~-i , (34) 

The trial functions are chosen to fit the natural 
boundary conditions of equation (10) and 
equation (14) : 

ecLJl _ 1 ebX ~ 1 
T = ;a-_m 1 ; T” z 

eb - 1 (35) 

Hence the surface integrals vanish identically, 
resulting in a variational principle of the form 
6Ji = 0, where 

r 
J1 = +-;;yx* 

I 
dX(36) 

0 

Upon substituting equation (35) into equation 
(36), and noting that 

the exact solutions [equation (34)] are obtained 
after some computation. Work is progressing on 
some less trivial problems, which will be re- 
ported separately. 
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Resume-Suivant une suggestion due a Morse et Feshbach, des principes variationnels adjoints 
sont construits pour la diffusion par convection instationnaire d’un scalaire passif, tel que la chaleur ou 
la masse, dans un fluide incompressible sous des conditions de generalite considerable. En ayant 
recours a la thtorie classique des champs, des conditions suffisantes sont etabhes pour un principe ex- 

tremal. Un exemple simple d’illustration est dorm&. 

Zusammenfassung-In einer inkompressiblen Fhissigkeit wurden unter ziemlich allgemeinen Bedin- 
gungen fiir die nichtstetige konvektive Diffusion einer passiven Skalaren, wir z.B. Warme oder Masse 
nach einer Anregung, die auf Morse oder Feshbach zurtickzufiihren ist, beigeordnete Variations- 
prinzipien erstellt. Mit Hilfe der klassischen Feldtheorie werden ftir ein extremes Prinzip den Vorausset- 

zungen gentigende Bedingungen festgelegt. Ein einfaches anschauliches Beispiel wird angeftihrt. 

AaHoTaqusr--no npe~no~ennro Mopce II @em6axa paapa6oranbr conpnHtennbre sapnaqnon- 
HbIt? IIpI4H~HIE.I AJIFI HWTa~HOHapHOii KOHBeKTLlBHOfi ~I4f#$y3MM II3CCHBHOt CHaJIRpHOti 
CY6CTaHqm TaRoti Kau Term0 II Macca, n nec~mrae~foti XAAKOCTM. 06paqenne IE rt.nac- 
CllWCltO~ TeOPMPI IIOJIeii IIOMOrJIO AOCTaTOsHbIe YCJIOBIWI AjIFi 3KCIIepHM0HTaJIbHOl'O IIPH- 

muma. IIPMB~~JRTCJI 11pOcT0ti IJOHCHFIIOIJ@~ npumep. 

H.&f.-Y 


